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The weakening of supercompressed detonation waves by rarefaction waves approaching 
these from behind was considered in a number of papers. It was established in [l] that 
the interaction of an infinitely narrow plane supercompressed detonation wave with a suf- 
ficiently intensive rarefaction flow behind it results in a gradual weakening of the wave, 

and its asymptotic transition to the Chapman-Jouguet mode. With weakening cylindrical 
and spherical supercompressed waves this transition to the Chapman-Jouguet mode may 
occur at a finite distance, not asymptotically as is the case of plane waves n]. The asym- 
ptotic behavior of a plane detonation wave of the “two-front”pattern. i.e. of a detona- 
tion wave consisting of an adiabatic jump followed by a heat release jump, the distance 

between the two jumps being dependent 
on the time elapsed between the instant 

a gas particle passes through the first jump 

and the instant of its ignition. It was shown, 
with a number of simplifying assumptions 
(see below), that the transition of such 

wave to the Chapman-Jouguet pattern 
occurs at sufficiently small values of the 

activation energy only. When the activa- 
tion energy is high, a small variation of 
initial conditions leads to an exponential 

deviation of the wave front from the asymp- 
totic path corresponding to the Chapman- 

Jouguet pattern. 
The problem of the asymptotic behavior 

Fig. 1 
of weakened detonation waves is closely 
related to that of the stability of such 

waves with respect to various perturbations. The instability of a plane two-front deto- 
nation waves associated with a possible spontaneous heat front disintegration was consi- 
dered in [4.5]. Paper [4] had in particular established a criterion according to which 

this type of instability occurs when the activation energy is sufficiently high. 

The instability occurring in weakened detonation waves may lead to oscillations of 
considerable amplitude in the stream of gas, and to the disintegration of detonation 
waves. An example of such detonation wave disintegration in front of a body flying at 
high velocity in a hydrogen-air mixture is shown in Fig. 1 (*). 

A detailed analysis is made in this paper of the problem of weakening of a plane deto- 

nation wave of the two-front type by rarefaction perturbations approaching it from 

*) Photograph taken at the Institute of Mechanics of the Moscow State University by 
V. V. Semchenko. 
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behind ; the oscillation initiation mechanism is investigated, and the criterion of wave 

stability behavior when subject to weakening and in transition to the Chapman-Jouguet 
mode is estabilshed. 

We shall consider a one-dimensional flow of gas in the presence of a two-front deto- 
nation wave (Fig.2). Let 21, p and p be respectively the gas velocity, pressure and den- 
sity. Variation of these parameters in each of the three regions, separated from each 

other by the adiabatic jump front s and the heat release front f are defined by the equa- 
tions of adiabatic motion of gas. We shall denote by subscript CO the parameters upstream 

of the adiabatic jump, and by subscript 1 those between the two fronts, while leaving the 
magnitudes downstream of the heat release wave without a subscript. 

The gas parameters must be bound by conditions 
at the adiabatic jump 

v~---vco= __ (1) 

p1 = pco + po3 (Go - cs) (Go - Vl), Pl = “-‘“_y 
CS) 

s 

and at heat release front 
1 

~-vl-T+~ - - ~~-(vl-c,,-I([~‘-(v,- c42-2((r~-l)Qy} 
I 

P = p1+ Pl (Vl -q) (u1- v), p = pIu(vyf) 
f 

Here u is the velocity of sound, while c, and cf are respectively the propagation velo- 

cities of the adiabatic jump, and of the heat release front. The gas is assumed to be per- 
fect and its specific heat ratio y constant throughout the whole stream. The heat release 

Q per mass unit of gas passing through front /’ is assumed to be given. 
The heat release front propagates through the gas 

at subsonic velocity (to which corresponds the selec- 
ted minus sign in front of the radical of the first con- 
dition of (2), hence, from it emanate the character- 

istics of three sets, one of which is directed upstream. 
Because of this, conditions (2) are insufficient for a 
unique determination of perturbations moving away 
from the front along the characteristics, and of the 

front velocity from known perturbations approaching 
the front, and must be supplemented by one more 
condition. For the problem here considered this con- 

Fig. 2 dition is given by the specified ignition time lag z, 
i.e. the time it takes a gas particle to pass from the 

adiabatic to the heat release front. In fact, because along the particle trajectory 
t+r 

rf(t +4 = rl(t) f $,vdt (4 

hence, for a given ‘t this equation provides the supplementary condition necessary for the 
unique definition of the perturbation moving upstream and away from the heat release 
front. In order to allow for the effect of thermodynamic conditions to which the particle 
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is subjected on time’G , we shall determine this time from the following relationship 

taken along the particle trajectory after it had passed through the adiabatic jump 

t+r 

$ f (F1 T) dt = 1 (4) 

If the particle pressure and temperature T remain unchanged, then time T is simply 

equal to 1 / f (p, T). F unction f may, e. g., be presented in the form 

f = kpm-l exp $ 
i j 

(5) 

where E is the activation energy, R the gas constant, and m and k are constants. 
As the initial state we shall take the stationary wave structure in a system of coordi- 

nates in which the wave is at rest. All magnitudes appertaining to this state will be deno- 
ted by subscript 0. We shall consider the nonstationary motions produced by the inter- 

action of this wave with perturbations approaching it from behind. 
On the assumption of a weakly perturbed motion in the layer between the two fronts, 

we represent the gas parameters in this layer in the form 

V, = 9, + 6% Pl = PlO + 6P1, PI = PlO + bl 

From equations of gas dynamics we derive the linear approximation 

~VI= ~10 (F + G), ~PI= ~lo~loalo (- F + G), 

dp,==@$‘(-F+G)+p,,H (f% 
where each of the functions F, G and Hdepend respectively on one of the characteristic 
arguments IE = r - (vlo - a,,) t, q = r - (VI0 + (110) 6 P = r - %ot 

Conditions (1) along the adiabatic front yield after linearization the following rela- 
tionships between functions F, G and H at that front (in a linear approximation with 
r = o), and the velocity c, of the latter: 

G, = - hF,, H, = aF,: 2 = xF, (7) 

Here h, 0 and x are functions of the Mach number M, of the oncoming stream and 
of the specific heat ratio y 

h= 
2M,zMlo - I- Mm2 4 (Mm2Mlo2 - 1) 

2Mm2Mlo + 1 + Mm2 ’ ’ = 2MaZMl,, + i-j- Mm2 ’ 

0 + 1) nf,? 
’ = 2M,“M~,, + 1+ Mm2 

The relation between Ml0 and Ma is defined by formula 

Mlo2 = 
1 + l/z 0 - mfw2 
rMaz - l/z (r - 1) 

Magnitude k = - G, / F, provides a standard for the variation of pressure perturba- 
tion at its reflection from the jump, and is usually referred to as the coefficient of weak 
perturbation reflection from a jump. 

We emphasize that the specification of perturbations approaching the jump from behind 
along characteristics E = cor& (i.e. function F) completely defines the perturbations 
moving away from the jump along characteristics q = const and 5 = const (i. e. functions 
G and H) and also the jump velocity c,. 
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From (3) and (4) we obtain in a linear approximation (assuming that ‘s varies insigni- 
ficantly with varying p and T) 

If (t j- z,) = re (tf + n1ozo + UlO 

alnf 6pl 
-- 

azoplo 

‘l’nis expression has been derived earlikr in [4]. 

Using formulas (6) we integrate, and present expression (8) in the form 
t+20 

-/- (1 - PM,,) G (- alot - u&j a - nH (-v&) v.Lozo (9) 
Here 

P = (r--1)n frm’, 
8lnf 

n=3iii-FOo’ 
When function f is defined by (5), then 

E 
n= -, n&f = Trt - 1 

RTlo 

Differentiating Eq. (9) with respect to t we obtain the following condition : 

ci, t+z, _ CL%, t 

VI0 
---+ bl fFf, t+s, 

2115 
- F,,J f 6s (G, tis, - G,,,) - ~u~o~o~~,~ (10) 

where 

Condition (10) binds the gas parameter values of one of the same particle when this is 
at a point behind the adiabatic jump, and in front of the heat release front. Noting that 

parameters cs, E‘, and G, can be expressed in terms of H, by using relationships (‘I), and 

that function H holds when subscripts f and t f ‘tOare substituted for S and t , we can 
readily transform condition (10) in such a way that it will contain parameters of the gas 
in front of the heat release front and ofthat front velocity only (subscript f is here, and 
in the following omitted) 

C - = blF + b2G + ’ - b151- b2h H - nv,,~,H’ ($1) 
30 

We shall now revert to conditions (2) binding the gas parameters on the two sides of 
the heat release front. We introduce parameter, A which defines the difference between 
an unperturbed detonation wave and the Chapman-Jouguet wave by means of the formula 

Then 
! (al02 --%I I Qo 

')'--2(+ 1) 0 = uJ2A2 

+uJB =v.i 
) ( 

b 
I-- 

T+f j 
, 

PO = PlO + PlO%O (v 
d 

10 - vo> = PJ + PlO%OVJ _ T+l 

PlOVlO PJ 
PO=-= 2 

vo 1 - A/(7 + I) * ‘02 - ” = v,,v~A 

Relationships (2) for r = z+,~,, are for any A and small perturbations of the form 

6v = v --v,=~{(l+~~)Ci-(r--~--~)U’“~+ 

+ jr_& +~;~)vloG-~ v,of-f+v~A- W) 
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+A2 f 2~10 ( & A)[(1 + &jc-(I$- & i$+,,F~) 
( I -j-- -& - r--1’ vloG - $-+ v&f 

Ml0 ) ‘I’ - 
11 I 

6P 
PO = -~v-(1~-~jc+~2-~--_Mlo-(l-~~,)~~v,oF+ 

+ [2 4 & + Jf,o - (1 + MI,) %] v,oG + ~10 (4 - $-) if 

&J 
PO= 

-$+(% -ljs+(f - MI,) F + (1 + mu,) G + ifi 

In the beginning we shall assume that parameter A is not small, i. e, that the original 
detonation wave is not close to the Chapman-Jouguet mode. Then the parameters C /nIo, 
F, G and H in the relations~ps (12) may be considered small in comparison to As, and 
we can write the expression of the flow downstream of the heat release front in a linear 

approximation, i.e. by analogy to expressions (6) as follows : 

6~ = vo (F, =t G,h 6~ = povoao (-- F, 4 W 

6p = %(--Fe -c G,) + POH, 

After linearization of the radical in the first of Eqs. (12). its three conditions together 
with condition (11) yield four linear equations relating the heat release front velocity 

ct and the three perturbations 8’, G,and H,moving away from the front to the three per- 
turbations G, I$ and $‘~approaching the front. For the determination of cf and F we 

have in addition to (11) the following relationship: 

In the absence of perturbations approaching the heat release front, i.e. when G = H= 

= F, = 0, Eqs. (11) and (13) yield two different relationships binding the heat release 
front velocity c with perturbation F moving upstream and away from it. Condition (11) 
which is the consequence of the presence of a definite ignition time lag may be called 
“the chemical” condition, and condition (13) which follows from the laws of conservation 
at the heat release front may be called “the gas-dynamical” condition. 

When no perturbations approach the heat release front, then its velocity c(l) is, in 
accordance with the chemical condition, related to magnitude P by relationship 

c(l) = b,V,$ 
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Velocity c@), when defined for the same values of F by the gasdynamical condition, is 

c(s) = B,V,$ 

where B, is to be obtained from Eq. (13). According to [4] a two-front detonation wave 
is unstable for (C(l) /Cc’) ) > 1 , and stable in the opposite case. The fulfilment of this 
instability criterion is an indication that in the absence of perturbations there exists in 

addition to the solution in which the release front is stationary. another solution in which 
this front disintegrates, moves at a new velocity, and emits shock and centered rarefac- 

tion waves. (If a rarefaction wave moving upstream is generated at the disintegration, 
then the motion will be self-similar only on condition that function f (p, ?‘) in Eq,(4) 
does not contain constants which would make possible the formation of time, or length 

scales from the defining magnitudes). Generally, solutions containing discontinuity dis- 
integration will not be close to the initial unperturbed state. Transition from the initial 
stationary state to the solution with discontinuity disintegration is essentially a nonlinear 

process. A number of solutions containing discontinuity disintegration was analyzed in 

r51. 
The stability boundary of the ignition time lag, as determined from formula (5) is shown 

in Fig. 3 in terms of dependence of E / RT_, on M, and Q = Q I cpT,(computed for 
y = 1.4 and m = 1). 

We would point out that formu- 
las (13) may obviousfy be used in 
the determination of the stability 
boundary also when A is arbitra- 

rily small. It follows from Fig. 3 
that for considerable values of acti- 
vation energy E and fixed heat 
release rate Q the detonation wave 
becomes unstable when approach- 
ing the Chapman-Jouguet mode. 

Instability of the detonation 
wave considered in [7] may be 

termed inner instability. As already 
stated, its character is nonlinear, 

Fig. 3 
and it may occur spontaneously. 

In the absence of perturbations 

reaching the heat release front Eqs. (2) and (4) in linear approximation have solutions 
different from the solution free of perturbations only at the stability limit defined above. 

In all other cases instability may only occur as the result of a gradual development of a 

perturbation acting on the wave stationary structure. 
We revert to Eqs. (11) and (13), and assume that the detonation wave interacts with 

the perturbation reaching it from behind. In this case perturbations G and H approach- 
ing the heat release front from upstream will be reflections from the adiabatic jump of 
perturbations F moving forward from the heat release front, i. e. 

G,, t = - hFf* t-s,, q,, t = GFf, t-&g H,, t’ = - Q ,E - 1 f Ff,‘t_Gr 

where 
61 = 

-2M10 
P 70, i - Mro’ 82= & 
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Using these relationships, and substituting for cf in Eq. (13) its expression given by (11). 
we obtain for function F the following equation: 

Ff, t = h’Ff, t-6, + h”flf, t-51 + ~‘%,@‘f, i-8. + KAF,. t e-9 

where parameters A’, A”, h”’ and K are linear-fractional functions of m’and n with 
coefficients of known dependence on the undisturbed flow parameters. For simplicity’s 

sake we shall adduce the expressions of these parameters for A < 1 only, i. e. for deto- 
nation modes close to the Chapman-Jouguet mode 

h, = 1 + Mm2 - 0 - 1) fill0 - (1 + MIO’) bz h 

1 -t- Mlo2 + t-r - 1) MIO - (1 + MIO? bl ’ 
hv = _(x --Ih’+:l&) (1 + Mlo2) - LT 

~+~~02+(~--i)~~o-(l+M~oZ)b~ 

K= (1 + rM1oy 
tT + I) (I - ~lo2)[1 + ~10~ + (T -- 1) Mlo - (1 + Mm‘? hl 

All of these magnitudes increase, as they should, indefinitely when approaching the 
stability limit, as was shown in [4]. In the limit case considered here this limit is defined 
by the formula 

lr = (1 + ;li:,:: MiO) 

The boundary curve v = gJ, or A = 0 , of Fig. 3 correspond to this limit. 

We recall that Eq. (14) with coefficients defined by formulas (15) holds for F< Aa 
only, hence condition F, < A must be fulfilled for incident perturbation F,. 

It is, however, interesting to consider incident perturbations of the order of A. This is 

particularly so, because in the analysis of a slow and weak supercompressed detonation 
wave transition to the Chapman-Jouguet mode the perturbation which weakens the deto- 
nation wave must be of this order. 

We revert to Eqs. (12), and shall consider the case of a perturbation of order A inci- 
dent on the heat release front. From the first condition of (12) follows that CI / ~110 and 
F (and consequently in this problem also functions G and H) must be of the order of 

AZ. Omitting terms of higher order, we derive from the first condition of (12) 

I i 1 ,,-vJ= - vJ2A2+ 2vIo2 -- Mlo2 

- l+&+$$)F-(I+&-- (, 
T--1 G 
MIO ) 

--&Hr (45) 

In accord with the results presented in [1] (or by a direct substitution of this expression 
of u into the remaining conditions (12)) we conclude that downstream of the heat release 

front perturbations of the order of A represent a simple wave reaching the heat release 
front, while perturbations moving downstream away from this front are of the order of As. 

Thus, the left side of expression (15) should be considered as given, and consequently, 
when the perturbations reaching the wave are of the order of A , this condition replaces 
condition (13) valid when the approaching perturbations are of a higher order. 

It will be readily seen that condition (13) in the limit case of small A and condition 
(15) differ only as regards the terms defining the perturbations approaching the front 
from behind. Hence, we can use in this case, as previously, Eq. (14) with the same values 
of coefficients h’, h” andh”‘,but with the substitution in its last tern of magnitude 
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We shall now consider the simple unperturbed wave approaching the heat reiease front 
from behind. The formulas defining such a wave 

r=@--a)t--j-a,(U), U Jr -+ @Xlst 

may be replaced in the approximation here considered by the following : 

rfl r=---+ u-uuJ)t t_ 0 (U)> 22 -t_ 3 == uj + & 

If function @ (V> has a finite derivative when 2t = Vjl then we have with the same 
degree of accuracy 

r - rQ = J$” (u - v&r) (t - 8,) (Q = 6) (UJJt t, = -* CD’ ‘YJ)j (17) 

i.e. the wave may be considered as being centralized, Taking the value of v - VJ 
from (17) with r = 2)10-c0, we write expression (16) in the following form : 

2&l] p - eg2] WQ 

Equation (14)” after replacement AF ef,t by expression (la), provides ready means for 
defining function P, and also of other looked for functions in the band comprised between 
the two fronts, step by step in each of the regions separated from each other by the ehar- 

acteristics of various sets. The magnitude of 
stream perturbations of the order A2 downstream 

of the heat release front, superimposed on the 

Fig, 4 Fig. 5 

a~~ro~~~n~ simple wave, may, if necessary, be determined from conditions (22). 
We shall analyze the asymptotic behavior of the solution of Eq. (14) for t + k ) and 
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assume that Ff, t = A2 (c + cIeztlso) (z = p + iQ) 

Here b and Q are real numbers. Substituting this expression into Eq. (14), we obtain 
k 

c = 2 (T + 1) (1 - h’ - h”) 

After certain transformations we obtain from this 

(Cf)m _ (1 + rMm2)2 
2(r+1)2(M002+l)(MC02-1) 

A2 
VCn 

(1% 

It is easy to establish from the first of Eqs. (2) and the definition of A that the deto- 
nation wave velocity determined by this formula corresponds to the Chapman-Jouguet 
mode. 

nl I 1 I I I I 

Fig. 6 
. 

The complex constant Z appearing in the solution of the homogeneous equation of P 
must satisfy condition 

h’exp + + (h” + $G& h”z) exp + - 1-o 

For the solution to be stable it is necessary that all zeros appearing in the left side of 

Fig. 8 

this equality lie to the left of the imag- 
inary axis of the plane of the complex 
variable Z. 

The stability boundary is shown in 

Figs.4 and 5 in terms of dependence 
of EIRT,, on r and M,along this 

boundary. Figs. 6 and 7 show the cor- 

responding values of the neutral oscil- 
lation frequencies 8. The stability 

boundary in the form of dependence 
of limit values of E/RT, on M, for 

‘r = 1.4 is also shown on Fig. 3 by a 
dotted line. It follows from these data 
that the loss of stability at high M, 
calculated on the basis of the linear 
mechanism, occurs at a lower activar 
tion energy than that obtaining with 
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the nonlinear mechanism. In other words, if for certain values of the activation energy 
and heat release a detonation wave is stable, then in the course of its gradual weakening 
it will either remain stable, or begins to loose its stability in conformity with the linear 
mechanism. 

We note, once again, that the problem of the two-front detonation wave weakened by 
a rarefaction wave approaching it from behind,as well as that of transition of detonation 

to the Chapman-Jouguet pattern, were previously considered in [3], where conditions (3)- 

-(5) were presented in the approximate form 
k l!i 

rf=rSi-(%.-~J~, z=,_,e=pflT, 
P8 

in which all magnitudes relate to one and the same instant of time t. Values of gas 
parameters downstream of the adiabatic jump and in front of the heat release front were 

assumed to be the same for a given t. With these assumptions, and in the presence of 
interaction with a sufficiently strong 
Riemann wave, the detonation wave 

assumes the Chapman-Jouguet pattern. 
However, this mode is stable with re- 
spect to small perturbations of the ini- 

tial state (smooth exponential attenua- 

tion of perturbations) only (when M,= 

Fig. 9 

= m)for 

R&-<&+r+l (26) 

In the opposite case the perturbations 
increase exponentially with time. 

We note that in the approximation 
considered in [S] the wave-like charac- 
ter of the perturbation buildup at loss 
of stability was not taken into consider- 

ation. 
We shall show in conclusion that 

according to the results of the present investigation the interaction of a two-front deto- 
nation wave with a rarefaction wave approaching it from behind may lead to oscillation 

onset also in the flow stability zone. To prove this we use Eq. (14) by substituting in it 

expression (18) for AF.f,t , and pass from function P to function cs, selecting ~~ as the 

unit of time and the Chapman-Jouguet wave velocity as the unit for cg , As the result 

we obtain lMl0 
et = h%,_,l + h"c,_s, + A" ~ 

l--lo 

C;_S*+(l-X-hv) 

ijo= Ml0 _zo (6, is a dimensional magnitude) 
l--Ml0 

Some of the results of the adiabatic jump velocity calculations are shown on Figs.8 
and 9 for various values of parameter to which characterizes the intensity of the rarefac- 
tion wave approaching the combustion front. 

The conclusions reached in this work are in accord with the results of the numerical 
solution of the nonlinear problem presented in [6]. 
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STATIONARY CONVECTION IN A VERTICAL CHANNEL 

WITH PERMEABLE BOUNDARIES 
PMM Vol. 33. Ng3, 1969. pp. 476-481 

G. z. GERSHUNI. E. M. ZHUKHOVITSKII and D. L. SHVARTSBLAT 

(Received(E%!ber 11, 1968) 

The problem of stationary heat convection in an infinitely long vertical flat channel 
with permeable boundaries is considered. The fluid is heated from below, so that in the 
channel there exists a constant temperature gradient. The fluid is blown Into the chan- 

z 2h j- 

Fig. 1 

nel through one of its vertical boundaries, and is sucked away 
through the other creating a transverse flow through the layer 
at a constant velocity. An exact solution of the problem of 
superposition of vertical convection on the homogeneous trans- 

verse flow is derived. Two kinds of motion are analyzed, viz. 
a plane, and a space motion which along the layer boundary 
depend periodically on the horizontal coordinate. It is shown 

that plane convection motions are only possible up to a certain 
limit of the fluid blowing-in rate. 

1. A vertical plane layer of fluid is bounded by two paral- 
lel permeable planes z = f h (Fig. 1). A fluid is uniformly 
blown into the channel through one of its boundaries at con- 
stant velocity 8, and extracted through the other at the same 
uniform rate. 

The heating from below generates in the fluid a vertical 
temperature gradient a directed downwards. 

The equations of stationary convection are of the form [l] 


